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Moduli Spaces: Motivation

« What is a moduli problem?

. PhllosophlcaI_I¥ sPeaklng_ a moduli problem is a classification problem. In ?eome_try or topology, for
example, we like to classify interesting geometric objects like manifolds, algebraic varieties, vector
bundles or principal G-bundles up to their intrinsic symmetries, i.e. up to their isomorphisms
depending on the particular geometric nature of the objects.

 Just looking at the set of |s_omorP_h|sm classes of the geometric objects we like to classify normally
does not give much of an insight into the geometry. To solve a moduli problem means to construct a
certain geometrlc object, a moduli space, which could be for example a topological space, a
manifold or an algebraic variety such that its set of points corresponds bijectively to the set of
iIsomorphism classes of the geometric objects we like to classify.

» We could therefore say that a moduli space is a solution space of a given classification problem or
moduli problem. In constructing such a moduli space we obtain baslcallg a ﬁarametrl_zm space in
Whl(éh It_he geometric objects we like to classify are then parametrized by the coordinates of the
moduli space.



Moduli Spaces : Motivation

* However:

« Constructing a moduli space as the solution space for a given moduli
problem is normally not all what we like to ask for.

« We also would like to have a way of understanding how the different
Isomorphism classes of the geometric objects can be constructed
geometrically in a universal manner.

« So what we really like to construct is a universal geometric object, such
that all the other geometric objects can be constructed from this universal
object in a kind of unifying way



Classification of Vectorbundles as an Example

* We like to study the moduli problem of classifying vector bundles of fixed
rank over an algebraic curve over a field k.

« Let X be a smooth projective algebraic curve of genus g over a field k.

« We define the moduli functor My as the contravariant functor from the
category (Sch/k) of all schemes over k to the category of sets

My : (Sch/k)oP — (Sets).



Example: Vectorbundles

« On objects the functor My is defined by associating to a scheme U in
(Sch/k) the set M3 (U) of isomorphism classes of families of vector bundles
of rank n on X parameterized by U, i.e. the set of isomorphism classes of
vector bundles E of rank n on X x U.

« On morphisms My is defined by associating to a morphism of schemes f :
U, — U the map of sets f * : M} (U) —» My} (U,) induced by pullback of the
vector bundle E along the morphism idy x f as given by the commutative

diagram.

(idx X f)*6é ———= &

|

XxU' —>XxU



Example: Vectorbundles

* The moduli problem for classifying vector bundles of rank n and degree d
on a smooth projective algebraic curve X is now equivalent to the following
guestion.

* Is the moduli functor My representable? In other words, does there exist a
scheme M, in the category (Sch/k) such that for all schemes U in (Sch/k)
there is a bijective correspondence of sets

. M, (U) =Hom(Sch/k)(U, M_)?

* If such a scheme M,, exists, it is also called a fine moduli space



Example: Vectorbundles

* Now let us assume that this functor is representable by a scheme M,
. We then have

: M, (U) = Hom(Sch/k)(U, M,,)

* If a fine moduli space M, exists, we would have in particular a
bijective correspondence

. My (Spec(k)) = Hom(Sch/k)(Spec(k), M) = |M,|

* But this means that isomorphism classes of vector bundles over X
are in bijective correspondence with points of the moduli space M, .



Example: Vectorbundles

* If a fine moduli space M, exists, we would also have a bijective
correspondence

. MZ (M) = Hom(Sch/k)(M., M.)

* Now let EY"V be the element of the set My (M,) corresponding to the
morphism id,,, , I.e. EY"V |s a vector bundle of rank n over X x M_..



Example: Vectorbundles

« This vector bundle E 'V over X xM_is called a universal family of vector
bundles over X, because representability implies that for any vector bundle
E over X xU there is a unique morphism

f:U— M, suchthat E = (idy % f) * (E “"V) in the pullback diagram

£ 2 (idy x f)?€™" —— guniv

| idy % \
X xU —2Ls g e




Example: Vectorbundles

» Representability of the moduli functor M., would therefore solve the moduli
problem and addresses both desired properties of the solution, namely the
existence of a geometric object such that its points correspond bijectively
to isomorphism classes of vector bundles on the curve X and the existence
of a universal family E YV of vector bundles such that any family of vector
bundles E over X can be constructed up to isomorphism as the pullback of
the universal family E “"V along the classifying morphism



Problems

It unfortunately turns out that most moduli problems do not admit fine moduli
spaces, i.e their corresponding moduli functors turn out not to be
representable.

This, In particular, also holds for our example at hand, the classification of
vector bundles over smooth curves as we will shortly see.



The Moduli Functor My is not representable

* We can argue as follows to show that the moduli functor My is not
representable:

* Let E be a vector bundle on X x U and let pr, : X x U — U be the
projection map. In addition, let L be a line bundle on U.

* Define the induced bundle E ; := E & pr*,L.

 As vector bundles are always locally trivial in the Zariski topology it follows
that there exists an open covering {Ui}i€el of the scheme U such that the
restriction L|; of L on Ui is the trivial bundle for all i € I.



The Moduli Functor My is not representable

We will have on X x Ui therefore that E|y.,i = E o |xxui - ASSume now that the moduli functor
My is representable , i.e. there exists a scheme M, such that for all schemes U in the
category (Sch/k) there is a bijective correspondence of sets

. Mg (U) = Hom(Sch/k)(U, M,)

* Then it follows that there exists morphisms of schemes a, a, : U — M, corresponding to
the two vector bundles E and E, on X x U. But from the remarks above on local triviality of
vector bundles it follows that the restrictions of a and a, on Ui must be equal for all i € |,

* Le.aly =g |y
« And from this it would follow immediately that a = a ; and therefore E= E .
« But in general the two vector bundles E and E , are not necessarily globally isomorphic



Alternatives

* There are basically two approaches to circumvent the problem of non-
representability of the moduli functor:

1. Restrict the class of vector bundles to be classified to eliminate
automorphisms, i.e. rigidify the moduli problem via restriction of the
moduli functor to a smaller class of vector bundles and use a weaker
notion of representabillity.

2. Record the information about automorphisms by organizing the modauli

data differently, i.e. enlarge the category of schemes to ensure
representability of the moduli functor



Towards Stacks

 Let us briefly discuss how this second approach applies to our motiviating
example, the moduli problem of vector bundles of rank n on a smooth
projective algebraic curve X.

« How can we record the moduli data differently so that we don'’t lose the
iInformation from the automorphisms?

* Instead of passing to sets of isomorphism classes of vector bundles we will
use a categorical approach to record the information coming from the

automorphisms.



Towards Stacks

« As above let X be a smooth projective algebraic curve of genus g over a
field k.

* We define the moduli stack Bun" as the contravariant “functor” from the
category (Sch/k) of schemes over k to the category of groupoids Grpds

. Bun" : (Sch/k) °°» — Grpds



Towards Stacks

* On objects Bun" is defined by associating to a scheme U in (Sch/k) the
category Bun"(U) with objects being vector bundles E of rank n on X xU
and morphisms being vector bundle isomorphism, i.e. for every scheme U
the category Bun"(U) is a groupoid, i.e. a category in which all its
morphisms are isomorphisms.

« On morphisms Bun"is defined by associating to a morphism of schemes f .
U, — U a functor f * : Bun"(U) — Bun"(U, ) induced by pullback of the

vector bundle E along the morphism idy x f as given by the pullback
diagram

Ufli_\ X fﬁ?—-—f

L iy X f J 3

Xxl——=Xxl



Towards Stacks

« Because pullbacks are only given up to natural isomorphisms we also
have for any pair of composable morphisms of schemes U, - U,— U a
natural isomorphism between the induced pullback functors

. grefr=(fog)-

« And these natural isomorphisms will be associative with respect to
composition.

* Notice: Bun" is not really a “functor” in the classical categorical sense as it
preserves composition only up to specified isomorphisms and Bun"is
therefore what in general is called a pseudo-functor.



Towards Stacks

« An important feature of vector bundles is that they have the special
property that they can be defined on open coverings and glued together
when they are isomorphic when restricted to intersections.

« what we really will get here for Bun" is a pseudo-functor with glueing
properties on the category (Sch/k) once we have specified a topology
called Grothendieck topology on the category (Sch/k) in order to be able to
speak of “coverings” and “glueing ”.

« Such pseudo-functors with glueing properties, like Bun™ are called stacks



Summary:Why Stacks

* The moduli problem of classifying vector bundles of rank n over a smooth
projective algebraic curve X of genus g over the field k has no solution In
the category (Sch/k), but in stacks.

« This means, Bun" will be representable in stacks

« Another motivation for the introduction of stacks are quotient problems, i.e.
guotients of schemes by algebraic groups ( alternative to GIT approach)
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Let us denote Ob(Cat) the class of all categories. For every pair of categories A, B € Ob(Cat) we
have the ”smalﬁ%‘g‘c‘iry of functors Fun(.A, B). Composition of transformation of functors such as

F"
/—{W\ /’L\
A - B composes to A B
F

is called vertical composition, We will use the usual symbol o for this. Next, we will define horizontal
composition. In order to do this we explain a bit more of the structure at hand.



F G-

Namely for every triple of categories A, 3, and C there is a composition law
o : Ob(Fun(B, C)) X Ob(Fun(A[,RB)) — Ob(Fun(A, 0))

coming from composition of functors. This composition law is associative, and identity functors act
as units. In other words - forgetting about transformations of functors - we see that Cat forms a
category. How does this structure interact with the morphisms between functors?

—~p & &)
A 5HvY AT S
7
_ D
F/ GofF
< M /?
How to j&t the, )mzmmt @yﬂd‘l}?f( !
Well, given 7 : F' — F' a transformation of functors F, F’ : A — B and a functor G : B — C we
can define a transformation of functors G o F — G o F’. We will denote this transformatio It
e VA S S|
is given by the formula (1), = G(t,) : G(F(x)) = G(F'(x)) for all@e A. In this way composi-
tion with G becomes a functor M}:
Fun(A, B) — Fun(A, O).
W

To see this you just have to check that ;(idz) = idg.p and that g(#; o 1) = gt1 ° gt2. Of course
AN AN AN A
we also have that j4 .7 = 1.

Similarly, given s : G — G’ a transformation of functors G,G' : B— C and F : A — B a func-
tor we can define sy to be the transformation of functors GeoF — G’ o F given by
Sp)x = Spw : GFX)) — G'(F(x)) for all x € A. In this way composmon wntZ_?F becomes a

functor
>
Fun(B, C) — Fun(A, C). ’g; ﬁ

To see this you just have to check that (id;)F = 1dg.r and that (s‘l °S2)p = 5. ch 57 . Of course
we also have that sjq,, = s.

These constructions satisfy the additional properties gﬁ é/e

N I W = v 4

whenever these make sense. Finally, given functors F,F’ : A - B, and G,G’' : B— C and
transformations 7 : ' — F’,ands : G — G’ the following diagram is commutative

1
GOF%GOFI

G'OF—1>G’°F'
G’

P L S

in other words g/t e sp = sy o gt. To prove this we just consider what happens on any object
x € Ob(A):



GF () —s G(F ()

G'(F(x)) Tu? G'(F'(x))

which is commutative because s is a transformation of functors. This compatibility relation allows us
to define horizontal composition.

Thor we hwe e, odins we veed.

Definition 4.28.1. Given a diagram as in the left hand side of:

F G GoF
PR TR .
F' G' G'oF'

we define the horizontal composition s * t to be the transformation of functors 51 o s = spr o 1.
——e— T

Noo we defye the 2= colegpiy,

Definition 4.29.1. A (strict) 2-category C consists of the following data

(1) Aset of objects Ob(C).
NN
(2) For each pair x, y € Ob(C) a category Mor¢(x,y). The objects of Mor(x, y) will be called 1-
morphisms and denoted F' : x — y. The morphisms between these 1-morphisms will be
called 2-morphisms and denoted ¢:F’ — F. The composition of 2-morphisms in
—— —
Mor(x, y) will be called vertical composition and will be denoted 70 ¢’ forr: F’ — F and
t/ :F" > F'. T
(3) For each triple x, y, z € Ob(C) a functor
(e, %) : More(y,z) X More(x,y) — More(x, z).

A~
The image of the pair of 1-morphisms (£, G) on the left hand side will be called the composi-
tion of F and G, and denoted F o G. The image of the pair of 2-morphisms (¢, s) will be
called the horizontal composition and denoted 7 * s.
e— T S e O

These data are to satisfy the following rules:

(1) The set of objects together with the set of 1-morphisms endowed with composition of 1-mor-
phisms forms a category.

(2) Horizontal composition of 2-morphisms is associative.

(3) The identity 2-morphism id;q, of the identity 1-morphism id, is a unit for horizontal
composition.



Definition 4.29.2. Let C be a 2-category. A sub 2-category C' of C, is given by a subset Ob(C') of
Ob(C) and sub categories Mor . (x, y) of the categories Mor(x, y) forall x,y € Ob(C") such that

these, together with the operations = (composition 1-morphisms), ¢ (vertical composition 2-mor-

phisms), and * (horizontal composition) form a 2-category.
AL ot we loamed st will ke some
o 2oy

The notion of equivalence of categories that we defined in Section 4.2 extends to the more general

setting of 2-categories as follows.
¢ Lt

Definition 4.29.4. Two objects@@of a 2-category are equivalent if there exist I-morphisms
F:x— yandG:y— xsuchthat F o Gis 2-isomorphic to id, and G o F is 2-isomorphic to id,.

Definition 4.30.1. A (strict) (2, 1)-category is a 2-category in which all 2-morphisms are
‘ ‘ N —
isomorphisms.

/\/\/\N
Example 4.30.2. The 2-category Cat, see Remark 4.29.3, can be turned into a (2, 1)-category by
only allowing isomorphisms of functors as 2-morphisms. Ob S7(4
—_——— .

In fact, more generally any 2-category C produces a (2, l)-catego,‘:rym considering thj @g-cate-
gory C’ with the same objects and 1-morphisms but whose 2-morphisms are the invertible 2-mor-
phisms of C. In this situation we will say “let C’ be the (2, 1)-category associated to C" or similar.
For example, the (2, 1)-category of groupoids means the 2-category whose objects are groupoids,
whose 1-morphisms are functors and whose 2-morphisms are isomorphisms of functors. Except
that this is a bad example as a transformation between functors between groupoids is automatically
an isomorphism!

T. Codogiics ovev  caleqores

Definition 4.32.1. Let C be a category. The 2-category of categoneszverc is the 2-category de-
fined as follows:

H D
(1)  Its objects will be functorsp : S — C. y\/ Z)b
AN —
(2) Its 1-morphisms (S, p) — (S',p ) will be functors G : S — 5 such thatp’ o« G = p.
(3) Its 2-morphisms ¢ : G — H for G,H : (S,p) = (S’.p") will be morphisms of functors

such that p/(t,) = id,, for allx € Ob(S). j’é&@@) —3&%)%)@3
In this situation we will denote \’/
MO"C:;(/C(S,S’) ﬁ@ Fﬁﬂ@

the category of 1-morphisms between (S, p) and (S, p’)



r=7

X €S
(1) The fibre category over an object U € Ob(C) is the category Sy with obje9£ts \
Ob(Sy) = {x € Ob(S) : p(x) = U} =>4 .
and morphisms ? M\A’? % /\e
Mors,(x.y) = {$ € Mors(x,y) : pg) = idy /7
(2) Aliftof an object U € Ob(C) is an object x € Ob(S) such that p(x) = U, i.e, x € Ob(Sy)).
We will also sometime say that x /ies over U.

(3) Similarly, a /ift of a morphism f : V — U in C is a morphism ¢ : y —?;\' in S such that
p(¢p) = f . We sometimes say that ¢ lies overf. =X

Definition 4.32.2. Let C be a category. Let p : S — C be a category over C.

\L%
There are some observations we could make here. For example if F : (S, p) =1 ',p’) isa 1-mor-

phism of categories over C, then F induces functors of fibre categories F : Sy — S;,. Similarly for
: T~V
2-morphisms.

The ﬂﬁ% o, 25 the. Zﬂﬁﬁyé—&jﬂ{m
It we wll met for the spde i pogpick
Lemma 4.32.3. Let C be a category. The@catego;y of categories over C has 2-fibre products.

N N
Suppose that F : X — S and G : Y — S are morphisms of categories over C. An explicit 2-fibre
product X X Y is given by the following description

(1) an object of X Xg Y is a quadruple (U,x,y.f), where U € Ob(C), x € Ob(Xy),
y € Ob(YVy), andf : F(x) = G(y) is an isomorphism in Sy,

(2) a morphism (U,x,y,f) = (U'.x",y',f’) is given by a pair (a,b), where a : x — x' is a
morphism in X, andb : y — y' isa morphism in Y such that

b
(a) @ and b induce the same morphism U — U’ , and % f; HOOZ= G@
(b) the diagram

Vi
%Xﬁy —) F(x) —— G(y) gt

\[/ \S/ér F(a) G(b) Kﬁ);/ j "j ’
A == Fi,);',cg) by

2 gride. PV el

is commutative.

The functorsp : X Xg Y = X and q : X Xs Y — Y are the forgetful functors in this case. The
transformation  y :Fop — Gog Is given on the object &= (U,x,v.f) by
ye =f 1 F(p@&) = F(x) » G(y) = G(g(&).



M. Fbed  ote o(oNES

Let p : S — C be a category over C. Given an object x € S with p(x) = U, and given a morphism
f:V = U, we can try to take some kind of “fibre product V X, x” (or a base change of x via
V — U). Namely, a morphism from an object z € S into “V X x” should be given by a pair
(¢, g), where : z = x, g : p(z) = V such that p(¢) = f » g. Pictorially:

Morg (30> Morg () f@)* b
RS

(/ﬁ@f ) *B%DQ
?XA/MY d}@?j’@) p(2) 1% U xpyhé(f;

If such a morphlsm V Xy x = x exists then it is called a strongly cartesian mor

Definition 4.33.1. Let C be a category. Let p : S — C be a category over C. A strongly cartesian
morphism, or more precisely a strongly C-cartesian morphism is a morphism ¢ : y — x of S such
that for every z € Ob(S) the map

given by y —— (¢ = y, p(y)) is bijective.

Note that by the Yoneda Lemma 4.3.5, given x € Ob(.S) lying over U € Ob(C) and the morphism
[ 1V = U of C, if there is a strongly cartesian morphism ¢ : y — x with p(¢) = f, then (v, @) is
unique up to unique isomorphism. This is clear from the definition above, as the functor

z > Mors(z, X) Xppor(pizy.vy More(p(2), V)

only depends on the data (x,U,f : V — U). Hence we will sometimes use V X, x — x or
f*x — x to denote a strongly cartesian morphism which is a lift of f.

Definition 4.33.5. Let C be a category. Let p : S — C be a category over C. We say S is a fibred
category over C if given any x € Ob(S) lying over U € Ob(C) and any morphismf : V — U of C,
there exists a strongly cartesian morphism f *x — x lying over f.

—_ N\

Assume p 1 S — Cis a fibred category. For every f : V — U and x € Ob(S,) as in the definition
we may choose a strongly cartesian morphism f*x — x lying over f. By the axiom of choice we may
choose f*x — x for all f : V — U = p(x) simultaneously. We claim that for every morphism
¢:x—x"inSy andf : V — U thereis a unique morphism f*¢ : f*x — f*x’ in Sy such that

fJ«T(/)—>fl '%/JL
» Vo
R

commutes. Namely, the arrow exists and is unique because f*x’ — x' is strongly cartesian. The
uniqueness of this arrow guarantees that f* (now also defined on morphisms) is a functor
f* : SU - Sv.

—_—~\



ED=r
Definition 4.33.6. Assume p : S — Cis a fibred category. \]/ QL

(1) A choice of pullbacks' for p : S — C is given by a choice of a }(rongly cartesian morphism
f*x — x lying over f for any morphism f : V — U of C and any x € Ob(Sy,).

(2) Given a choice of pullbacks, for any morphism f : V. — U of C the functor f* : Syy — Sy
described above is called a pullback functor (associated to the choices f *x — x made above).

Definition 4.33.9. Let C be a category. The 2-category ofategor/'es over C is the sub 2-cat-
egory of the 2-category of categories over C (see Definition 4.32.1) defined as follows:

(1) Its objects will be fibred categoriesp : S — C.
(2) Its 1-morphisms (S,p) = (S’,p") will be functors G : S — S’ such that p’ « G = p and

such that G maps strongly cartesian morphisms to strongly cartesian morphisms.

(3) Its 2-morphisms t: G — H for G,H : (S,p) = (S',p’) will be morphisms of functors
such that p/(z,) = id,, forallx € Ob(S).

In this situation we will denote
Mor e (S,S")
the category of 1-morphisms between (S, p) and (S, p’)

Lemma 4.33.10. Let C be a category. The (2, 1)-category of fibred categories over C has ﬁlfiﬂg
Wﬂd they are described as in Lemma 4.32.3.

—é}(

g( é% @Zj <
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1V, Cutepies  Abed an pogeds
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Definition 4.35.1. Letp : S — C be a functor. We say that S is fibred in groupoids over C if the
following two conditions hold:

(1)  For every morphism f : V — U in C and every lift x of U there is a lift ¢p : y — x of f with
target.x.

(2) For every pair of morphisms ¢ : y — x and y : z — x and any morphism f : p(z) = p(y)
such that p(¢p) o f = p(y) there exists a unique lift y : z — y of f suchthatgho y = y.

Condition (2) phrased differently says that applying the functor p gives a bijection between the sets
of dotted arrows in the following commutative diagram below:

Py p(y) —— p(x)
A A

| g;i/) | /

| |

z p)

Another way to think about the second condition is the following. Suppose that g : W — V and
f 'V = U are morphisms in C. Let x € Ob(Sy;). By the first condition we can liftf to ¢ : y — x
and then we can lift g to y : z — y. Instead of doing this two step process we can directly lift g o f
toy : 7' — x. This gives the solid arrows in the diagram

0,

(4.35.1.1)

?

where the squiggly arrows represent not morphisms but the functor p. Applying the second condi-
tion to the arrows ¢ o y, y and idy, we conclude that there is a unique morphism y : z — 7' in Sy,

such that y o ¥ = ¢) o y. Similarly there is a unique morphism z — z. The uniqueness implies that
the morphisms z/ — z and z — 7’ are mutually inverse, in other words isomorphisms.

Eweqé — >0
<</\/\/‘\4~(
Qt(r\m){

Y=x
Vil



Lemma 4.35.2. Letp : S — C be a functor. The following are equivalent
= )Q >j

m) p S — Cisa category fibred in groupoids, and \[/
@ all fibre categories are groupoids and S is a fibred category over C.

V= U= >¥)
Moreover, in this case every morphism of S is strongly cartesian. In addition, given f *x — x lying
over f for all f .V — U = p(x) the data (U = Sy.,f — f*,ar,, ay) constructed in Lemma
4.33.7 defines a pseudo functor from C°’" in to the (2, 1) -category of groupoids.

Proof. Assume p : S — C is fibred in groupoids. To show all fibre categories Sy for U € Ob(C)
are groupoids, we must exhibit for every f : y — x in Sy; an inverse morphism. The diagram on the
left (in Sy;) is mapped by p to the diagram on the right:

;o

Yy—Xx U—U
. A =’ A
SA=Me 4 : im
X U

Since only id;; makes the diagram on the right commute, there is a unique g : x — y making the
diagram on the left commute, so fg = id,. By a similar argument there is a unique 4 : y — x so
that gh = id,. Then fgh=f : y — x. We have fg = id,, so h = f. Condition (2) of Definition
4.35.1 says exactly that every morphism of S is strongly cartesian. Hence condition (1) of Definition
4.35.1 implies that S is a fibred category over C.

Conversely, assume all fibre categories are groupoids and S is a fibred category over C. We have to
check conditions (1) and (2) of Definition 4.35.1. The first condition follows trivially. Let ¢p : y — Xx,
w:z—xand f: p(z) = p(y) such that p(¢h) o f = p(y) be as in condition (2) of Definition
4.35.1. Write U = p(x), V=pO»), W=p2),pl¢) =g:V—->U,ply)=h: W —= U. Choose a
strongly cartesian g*x — x lying over g. Then we get a morphism i : y = g”x in Sy, which is
therefore an isomorphism. We also get a morphismj : z = g*x corresponding to the pair (y,f) as
g"x — x is strongly cartesian. Then one checks that y = i~! o j is a solution.

We have seen in the proof of (1) = (2) that every morphism of S is strongly cartesian. The final
statement follows directly from Lemma 4.33.7. O



Definition 4.35.6. Let C be a category. The 2-category of categories fibred in groupoids over C is
the sub 2-category of the 2-category of fibred categories over C (see Definition 4.33.9) defined as
follows:

(1)  Its objects will be categories p : S — C fibred in groupoids.

—nAnAT AN
(2) Its 1-morphisms (S, p) = (S’, p’) will be functors G : S = S’ such that p’ e G = p (since
every morphism is strongly cartesian G automatically preserves them).

(3) Its 2-morphisms t: G — H for G,H : (S,p) = (S’,p’) will be morphisms of functors
such that p'(t,) = idy, for allx € Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually a (2, 1)-catego-
ry and not just a 2-category. Here is the obligatory lemma on 2-fibre products.

Vo Pepemnik aegoies Sfbal o gogeds

Definition 4.39.1. Let us call a category a setoid" if it is a groupoid where every object has exactly
one automorphism: the identity. %ﬁﬂ

v
Definition 4.39.2. Let C be a category. A category fibred in setoids is a category fibred in
groupoids all of whose fibre categories are setoids.




Definition 4.40.1. Let C be a caténry A category fibred in groupoids p = S — C is called repre-

sentable if there exists an object(X/of C and an equlvalencej S (in the 2-category of
“groupoids over C). — I
X wophm ) ==X V=0=X

The usual abuse of notation is to say that X represents and not mention the equivalence j. We
spell out what this entails.

Lemma 4.40.2. Let C be a category. Letp : S — C be a category fibred in groupoids.
(1) S isrepresentable if and only if the following conditions are satisfied:
——————\_——

(@) S is fibred in setoids, and
e~ ~—————
(b) the presheaf U — Ob(Sy)/ = is representable.

(2) IfS is representable the pair (X, j), where j is the equivalencej : S — C/X, is uniquely de-
termined up to isomorphism.

Proof. The first assertion follows immediately from Lemma 4.39.5. For the second, suppose that
j':8 = C/X" is a second such pair. Choose a 1-morphism ¢’ :C/X’ — S such that
Jlot! =idyyr and 1’ o j 2 idg. Then jot' : C/X" — C/X is an equivalence. Hence it is an iso-
morphism, see Lemma 4.38.6. Hence by the Yoneda Lemma 4.3.5 (via Example 4.38.7 for example) it
is given by an isomorphism X’ — X. O

Lem .40.3. Let C be a category. Let X, Y be categories fibred in groupoids over C. Assume
that X, )7 are representable by object: of C. Then

?QE((V]Q—‘ ﬁ% Morcayc(X.Y) / 2-isomorphism = Morc(X Y)é" Age‘é&%ﬂ@
sely, 2ive

More pre n ¢ X — Y there exists a 1-morphism f : X — Y which induces ¢ on iso-
morphism classes of objects and which is unique up to unique 2 -isomorphism.

Proof. By Example 4.38.7 we have C/X = S;,, and C/Y = §),, . By Lemma 4.39.6 we have
PVl O V2

TN

Mora,,/c(é\’, )7)/2-isom0rphism = Morp_g;,(c) (hx. hy)

By the Yoneda Lemma 4.3.5 we have M orpgjc)(hx, hy) = Morc(X. Y). O

béx = Mor, C—R) VU EP
S}% Ob(S) = £ U, DEOR(P D,
x & b W3

(U, LY
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Definition 58.10.2. A site' consists of a category C and a set Cov(C) consisting of families of mor-
phisms with fixed target called coverings, such that
—_———

(1) (isomorphism)if ¢ : V — U is an isomorphismin C, then {¢ : V — U} is a covering,
A A
(2) (locality) if {¢; : U; = U}, is a covering and for all i € I we are given a covering
=
{![/U % U,‘,’ - Ui}jel,w then
{pioyy : Uy = Ulujert,, i

is also a covering, and

(3) (base change) if {U; — U}, is a coveringand V — U is a morphism in C, then
—— e ———

(@) foralli € I the fibre product U; X;; V exists in C, and
(b) {U; Xy V — V},e is acovering.

ij @;@VZ}’Lj

Definition 34.7.1. Let T be a scheme. An fppf covering of T is a family of morphisms

{fi : T; = T},e; of schemes such that each f; is flat, locally of finite presentation and such that
T= Ufi(Ti)-

MVM’C’U& ,}l‘{ ahemes

Let X be a category fibred in groupoids over (Sch/S)y,,r . Recall that X is said to be representable if
there exists a scheme U € Ob((Sch/S)y,,r) and an equivalence
1 fpp

j X — (SCh/U)fppf

AN T
of categories over (Sch/S);,,r, see Categories, Definition 4.40.1. We will sometimes say that &’ is
representable by a scheme to distinguish from the case where X’ is representable by an algebraic
space (see below).

If X, Y are fibred in groupoids and representable by U, V, then we have

(92.4.0.1) Mor cacsenis) - (X, ) / 2-isomorphism = Morg.s(U, V)
AN ———e AN T T T—

O F s
Ai@ M%?Z alyeiac stacks,



Example 4. !;g 1. This exam Ie is the analogue of xample 4.36.1, for “presheaves of groupoids” in-

stead of “presheaves of categories”. The output will be a category fibred in groupoids instead of a fi-
bred category. Suppose thatM is a functor to the category of groupoids, see
Definition 4.29.5. For f : V — U in C we will suggestively write F(f) = f* for the functor from
F(U) to F(V). We construct a category Sy fibred in groupoids over C as follows. Define f

Ob(Sy) = {(U,x) | U € Ob(C), x € Ob(F(U))}. V=0
For (U, x),(V,y) € Ob(Sf) we define / \L \[,
Mors,(V,y),(U, ) = {(f, $) | f € Morc(V, U), ¢ € Mor e (v.f ﬁx)}y;c =X
- HfEMor((V v) Morpw) .f" %) 3=

In order to define composition we use that g* o f* = (f o g)* for a pair of composable morphisms

Definition 92.8.1. Let S be a scheme contained in Schy,, . A category fibred in groupoids
p: X = (SchlS)y,y is called representable by an algebraic space over S if there exists an algebraic
space F over § and an equivalence j : X — Sp of categories over (Sch/S) s -

N—~—"\r~ '

If X, Y are fibred in groupoids and representable by algebraic spaces F, GG over §, then we have
(92.8.2.1) Morcaysus),, X. Y) / 2-isomorphism = Morg,,s(F, G)
NWW

see Categories, Lemma 4.39.6. More precisely, any 1-morphism X — Y gives rise to a morphism
F — G. Conversely, give a morphism of sheaves FF — G over S there exists a 1-morphism
¢ : X = Y which gives rise to F' — G and which is unique up to unique 2-isomorphism.



W repesimle by Nghic Spuces
Definition 92.9.1. Let § be a scheme contained in Schy,,r. A 1-morphism f : X — } of cate-

gories fibred in groupoids over (Sch/S)y,, is called representable by algebraic spaces if for any
U € Ob((Sch/S)s,pr) and any y : (Sch/U)s,,r — Y the category fibred in groupoids

(SchlU)gpps Xyy X

—AAN AN N T ——
over (Sch/U)y,,r is representable by an algebraic space over U.

Choose an algebraic space F', over U which represents (Sch/U),,r X,y X. We may think of ', as
an algebraic space over § which comes equipped with a canonical morphism f, : F\, — U over §,
see Spaces, Section 63.16. Here is the diagram

WW (SchiU)pppr Xyy & ——> X

Pr
(92.9.1.1) P"ul @

(U)<~~nn (SchlU)gppy ——— Y

where the squiggly arrows represent the construction which associates to a stack fibred in setoids its
associated sheaf of isomorphism classes of objects. The right square is 2-commutative, and is a 2-
fibre product square.

a A .
0, ayept = WDJ)L&S"’\
Lemma 92.9.4. Let S be an object of Schy,,. Letf : X — Y be a 1-morphism of categories fi-

bred in groupoids over S. If X and Y are representable by algebraic spaces over S, then the 1-mor-
——— T e e AT T T
phism f is representable by algebraic spaces.

A e WL{{P_
Lemma 92.9.7. Let S be a scheme contained in Schfppf. Let X, Y, Z be categories fibred in

groupoids over (SchlS)s,,r. Letf : X — Y be a 1-morphism representable by algebraic spaces.
Letg : Z — Y be any 1-morphism. Consider the fibre product diagram

Zxgyr X —> X
o , P

g——Y

8

Then the base change f' is a 1 -morphism representable by algebraic spaces.



&) s ymo(xct,

Lemma 92.9.8. Let S be a scheme contained in Schf,,n,~. Let X,Y,Z be categories fibred in
groupoids over (SchlS)s,,r Letf : X = YV, g Z — Y be 1 -morphisms. Assume

(1) f is representable by algebraic spaces, and
(2) is representable by an algebraic space overS.

Then the 2-fibre product Z X, y; X is representable by an algebraic space.

~ \
B composion
Lemma 92.9.9. Let S be d scheme contained in Schy,, . Let X,Y,Z be categories fibred in

groupoids over (SchlS)pr . Iff : X = YV, g : Y — Z are 1-morphisms representable by algebra-
ic spaces, then

gef: X — 27
T T —
is a 1 -morphism representable by algebraic spaces.

o J)voo&cd;

Lemma 92.9.10. Let S be a scheme contained in Schy,, . Let X;,Y; be categories fibred in
groupoids over (Sch/S)sypr, i = 1,2. Letf; : X; — Y, i = 1,2 be 1-morphisms representable by
algebraic spaces. Then "

HiXfr: X1 XX — V) X,

,SN—— A —— S T— e —

is a 1 -morphism representable by algebraic spaces.

Iroferty P

Definition 92.10.1. Let § be a scheme contained in Schy,,r. Letf : X — Y be a 1-morphism of

categories fibred in groupoids over (Sch/S)y,,r . Assume f is representable by algebraic spaces. Let
A T AT T

P be a property of morphisms of algebraic spaces which

W

(1) is preserved under any base change, and

(2) is fppflocal on the base, see Descent on Spaces, Definition 72.9.1.
NN~ NN —

In this case we say that f has property P if for every U € Ob((Sch/S)y,,r) and any y € Yy, the re-

sulting morphism of algebrai v, = U, see diagram (92.9.1.1), has property




O bose.

Lemma 92.10.6. Let S be a scheme contained in Schf],,af. Let X, Y., Z be categories fibred in
groupoids over (SchlS)s,,r - Let P be a property as in Definition 92.10.1. Letf : X — Y be a 1-
morphism representable by algebraic spaces. Letg : Z — Y be any 1-morphism. Consider the 2-
fibre product diagram

I Xeyf X ——>X

g

Iff has P, then the base changef' has P.

Lemma 92.10.5. Let S be a scheme contained in Schy,, . Let X, Y, Z be categories fibred in
groupoids over (SchiS)s,ps . Let P be a property as in Definition 92.10.1 which is stable under com-

position. Letf : X — Y, g : Y — Z be 1-morphisms which are representable by algebraic spa-
ces. Iff and g have property P sodoesgeof : X — Z.
r—"—/\/w

B frovluct-
Lemma 92.10.8. Let S be a scheme contained in Schy,,r. Let P be a property as in Definition
92.10.1 which is stable under composition. Let X;, Y; be categories fibred in groupoids over
(SchlS)pppr, i =1,2. Letf; : X; = Y, i = 1,2 be 1-morphisms representable by algebraic spa-
ces. Iffy andf, have property P so doesf; X f> : X| X Xy = Y| X V.
——— T N
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Definition 3.1. Let 2 ke an algebraic stack. The smooth site Z,,
- i > = »N\/v\/\_/—\_,_\
on 2 is defined as the following category: '

1. The objects are given as pairs (U, u), wherewe and

: g . . A
g/.\l]/\—;_u\&;zs a smooth morphisms. U"B%

2. The morphisms are given as pairs (¢, ) : (U,u) — (V,v) where

WS a morphism of schemes and o : u = vo ¢ is a
-1somorphism, i.e. we have a commutative diagram of the form

N
U . %
&

together with a 2-isomorphism o : u = v o .
e N ~—_ .

3. The coverings are given by the smooth coverings of the schemes,
i.e. coverings of an object (U,u) are families of morphisms

such that the morphism

Hgo,,;:HU,-—>U

el el

is smooth and surjective.

MM}{@&MO"\ the. small site S
U\mﬁeﬁ{h‘oﬁﬁ,mﬁ 1y o

the. iy (S /3D S~ sdeues



2. Sheaf

Definition 3.2. Let 2" be an algebraic stack. A sheaf F on the
smooth site Z,, is given by the following data:

1. For each object (U,u) of Zsm, where U is a scheme and u :
U— Z a smooth morphism, a sheaf Fy7, on U.
T~ —
2. For each morphism (¢, «) : (U,u) — (V,v) of Zsm a morphism
F/\N\/w

of sheaves

satisfying the cocycle condition for composable morphisms, i.e. for

each commutative diagram of the form ﬁ , 1/@6}: -
T2 /‘0‘3); Vv

17

SAARLE
\iﬁ/ gp%ivjzw

together with 2-isomorphisms a:u = vop and 3 : v = w oY

we have that ~
N Gl
O W 01!),/3 = 91#099,%6004 o
-—J\N\_,.\_/\_/——/\N

We wll oo on geuall showes

A sheaf F is called quasi-coherent (resp. coherent, resp. of finite type,
resp. of finite presentation; Tesp. locally free) if the MS
quasi-coherent (resp. coherent, resp. of finite type, resp. of finite pre-
sentatiom, Tesp. locally free) for every morphism u : U — 2, where
U is a scheme. T

A sheaf F s called cartesian if all morphisms 6, . are isomor-
phisms.
—

O Lok ofesdecs
O _Glue
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Definition 3.3. A Wn an algebraic stack 2" is a co-
herent sheaf €& on X, such that all coherent sheaves Ey ., are locally

%fOT every morphism u : U — 2, where U is a scheme.

Example 3.4. (Structure sheaf of an algebraic stack) Let 2" be an
algebraic stack. The structure sheaf O9 on 2 is defined by assem-
bling the structure sheaves Oy of the schemes U for every smooth
morphism u : U — 2, i.e. by setting (O 2 )y« = Op. In this way we
get a ringed site (2, D4 ) on the alm and we can de-
fine sheaves of O g--modules, sheaves of quasi-coherent O g-modules

and, if 2" is locally noetherian, also sheaves of coherent O o--modules
[LMBO00], Chap. 13 & 15.

Example 3.5. (Constant sheaf Z/nZ) Let 2" be an algebraic stack.
Let n > 1 be a positive integer. The constant sheaf (Z/nZ) o is given
by assembling the constant sheaves (Z/nZ)y . = (Z/nZ)y = Z/nZ.
It turns out that this is actually a cartesian sheaf on 2" [LMBO00],

12.7.1 (ii). /iw@i% ZZL&M“L’“
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Example 3.7. (Universal vector bundle £ on X x %’un}’d) Let

PBun'y" be the modull stack of Tank 7% and degree d vector bun-

dles ‘oma smooth projective irredmm X of genus

g > 2. There exists a_universal vector bundlé €™ on the alge-

n,d : s :

raic stack X x ZBun’y”, because via representability any morphism
i ; .

U — Bun'y”, where U is a scheme defines a family of vector bundles

of rank n and degree d on the scheme X parametrized by U and the
cocycle conditions can easily be checked for vector bundles. Similar,

ss,n.d

we get universal vector bundles for the moduli stacks ZBun 'y (resp.
%un%’"’d) of semistable (resp. stable) vector bundles.

Example 3.8. (Equivariant sheaves) Let (Sch/S) be the category
of S-schemes and X be a noetherian S-scheme. Let G be an affine

smooth group S-scheme with a right action p : X x G — X and

consider the quotient stack [X/G]. Then any cartesian sheal F on

[X/G] is the same as an G-equivariant sheaf on X.
A e A T L

(7L~ QM. NS+ Szegc [p)mno)g]j

Let 2  be an algebraic stack and choose an atlas u : U — 2 of
Z . For cartesian sheaves F on 2" we define the global sections as
the equalizer

[(Z,F):=Ker(T'(U,F) = T(U x o U,F)).

It is not hard to see that this definition does not depend on the choice
of the atlas u : U — 2 of Z by first checking it on a covering and

then on refinements. U)%U—f U

v,
V=0



Definition 3.10. Let Z be an algebraic stack and F a quasi-coherent
sheaf on Z.,. The set of global sections is defined as

T(Z,F) :={(sva) : suu € H'U, fu,u),u,u = sv.o}.

The functor Q/;\p
'(Z,?7) : Shv(Z') — (Sets) d/

is called the global section functor. LV) D)

We can rephrase this by saying that the global sections are given
as the limit TEF) ~=FUL)F D)
I(Z,F) =lmI(U, Fu.) 7
~ YA 7]

where the limit is taken over all atlases u : U — Z with transition
functions given by the restriction maps 0, . Again, it is not hard

to show that for cartesian sheaves the two notions of global sections
coincide.

K Ml GO of - o
wd HbRO of Shemos

on the. site o have. 6"%21. z‘ﬁ‘{ectme_ oﬁecté

Definition 3.11. The i-th smooth cohomology group of the algebraic

stack A with respect to a sheaf F of abelian groups on the smooth
2 s e — T S
site Zsm 18 defined as

H. (Z,F):=RI(Z,F)

where the cohomology functor
Hin(2,7) = RIT(2,7) : A6(27) — Ab

is the i-th right derived functor of the global section functor I'(Z,7)
with respect to Zsm -
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For cartesian sheaves we can give a simplicial interpretation of
the sheaf cohomology of an algebraic stack 2~ [LMBO00], 12.4. Let
x: X — 2 be an atlas. As the diagonal morphism of an algebraic

stack is representable, we obtain by taking iterated fiber products of
the atlas with itself

X Xg X X
X———

~’\/\H\/\.—-\/\M

a simplicial scheme Xo = {X;};>0 over 2" with layers
—— e ———— -

Xi=XXgXXg - xqgX

"~ NN — —~  —2

given by the (i + 1)-fold iterated fiber product of the atlas with itself.

A simplicial scheme X, over 2" can simply be interpreted as a

functor : X;

Xo: AP o (Schj2) TR

~ NN TN —
where A°P is the category with objects finite sets [n] = {0,1,...n}
and morphisms order preserving maps and (Sch/ W
of schemes over the algebraic stack 27, i.e. the category of schemes
X together with morphisms z: X — 2.

Now let F be a sheaf on 2°. This defines a M@

simplicial scheme X,, i.e. a sheaf F; on all schemes X; together with
morphisms for all simplicial Inamthe form /f:; :



Xo(f)*Fn — Fm. We call a sheaf on a simplicial scheme cartesian
if A miorphisms f* are isomorphisms. If we start with a cartesian
sheaf F on 2", we get a cartesian sheaf F, on the simplicial scheme
X,. In this way we get a functor Shv(2") — Shv(X,).

Conversely, for any smooth mma sheaf Fq on
the simplicial scheme X, gives a sheaf on the covering U X o X —
via taking global sections and by assembling them to a sheafon Z .
Again starting with a cartesian sheaf F, on X, gives a cartesian sheaf
oni Z.

We can define cohomology of sheaves of abelian groups on simpli-
cial schemes generalizing the classical homological approach for sheaf
cohomology on schemes [Fri82].

{%}e_cwi, Sequance.

Theorem 3.12. Let 2" be an algebraic stack and F be a cartesian
sheaf of abelian groups on 2 . Let x : X — 2 be an atlas and Fe
the induced sheaf on the simplicial scheme Xo over 2 . Then there
15 a convergent spectral sequence

EP? HHE (Xy, Fy) = HEZU(X, F).
which is functorial with respect to morphisms F : 2 — % of alge-

braic stacks. %_ — 5}7& (g:% b
\’

7~ L= adye co)mwtﬂjj X —> %7@4“%>

Example 3.13. (l-adic smooth cohomology) Let 2~ be an algebraic
stack defined over the field [F, of characteristic p. Via base change we
get an associated algebraic stack over the algebraic closure F, by
setting

X =9 X Spec(F Spec( 4):

Let I be a prime number different from p. The [-qadic smooth coho-
mgqlogyof the algebraic stack 2" is defined as

e O) — lim H2,,(Z, Z/1"Z) @z, Q.
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Theorem 3.14. We have the following properties:

(1.) (W) Let 2" and % be algebraic stacks.
There 1s a natural isomorphism of graded Q;-algebras

H:m(y X ?, @l) = H.;km(yv Ql) %Y H:m(yv Ql)

(2.) @W) Let & — 2 be a closed embedding of alge-
braic stacks of codimension c. There is a long exact sequence

= H (2, Qu(e) = Hop (2, Qi) = Hop (2\Z,Qu) — -+
——————— T ——— - ~—
In particular, H: (Z,Q) = H! (Z\Z,Q) is an isomor-
phism in the range i < 2¢ — 1.
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Example 3.15. (Cohomology of the classifying stack £AG,,,) Let G,,
be the iplicative group over Spec . The quotient morphism
A" — {0} — P*! is a principal G,,-bundle and we have a cartesian
diagram of the form

A™ — {0} —— Spec(F,)

s d %Gm

— \—

The fiber of the morphism 7 is A" — {0} and we can employ the

Leray spectral sequence
i
. Rq'ir*Ql-)L

By = b, ("

and because Rm,.Q; = Q; and RI7,Q; = 0 if ¢ < 2n — 1 it follows
for ¢ < 2n — 1 that

— —n—1
Hgm,(%Gmﬁ Ql) = HZWL(IP ) Ql)
W

and therefore

H (G, Qi) = Qifcd]

[ S S
where ¢; is a generator of degree 2 given as the Chern class of the

universal bundle £“"% on the classifying stack %AG,,,.



0., Gebe_

Definition 3.16. A morphism F : 2" — % of algebraic stacks is a
gerbe over % if the following holds:

1. F_is locally surjective, i.e. for any morphism U — % from a
scheme, there exists a covering U" — U such that the morphism

U' — % can be lifted to a morphism U' — 2, i.e.

a P

e

v— y—=0=>)

2. All objects in a fiber of F' are loc .somorphic, i.e. if uq,us :

U — are objects of & (U) such that F(uy) = F(us2), then
there exists a coveringw such that uy|y: = us|y:.
FNW

A gerbe F : 2 — % is a G,,-gerbe if for all morphisms u : U — %
the relative automorphisnﬂmut}@ (u) is canom’ca@somc)@hic
to G, (U).

(\’\/'v\/v
We can think of a G,,-gerbe over a scheme Y as a #G,,-bundle

over Y, i.e. a bundle over Y with fiber AG,,.
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Example 3.17. As mentioned before, there is a morphism of stacks

¢
F: PBuny"™ — Bun®"

where Zun’™ is the moduli stack of stable vector bundles of rank

3 o 7 loebnal s 3 st e ol et B 7, T
morphism F' has the following property: For any morphism U —
Bun}" of schemes there exists an é_t:gl_e_g_ev/ew such that
the morphism U’ — Bun" lifts to a morphism U’ — R*>" and so
it lifts to the moduli stack Bun’" = [R**"/GLy].

Therefore F' is a gerbe and because all aufomorphisms of stable

bundles are given by scalars the fiber of F' is isomorphic to Gy, i.e.
F is actually a G,,-gerbe.
In general, a morphism of quotient stacks of the form

F:[R/GLn] — [R/PGLN]

AN~ —— T e— . ———
is a G,,-gerbe. This is useful/qm order to cgynpare “stacky” quotients
with GIT quotients.

|)- TM@

Proposition 3.18. Let F : 2 — % be a G,,-gerbe. Then the
following are equivalent:

quolient. ek, (LT quotient

1. The Gy,-gerbe F 1is trivial, i.e. we have a splitting of algebraic
stacks

X =2Y x BGp,.

Ll Ve e, P .

2. The morphism F' has a section.
W
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Example 3.19. There is also a morphism of stacks

. O st,n,d st,n,d
F: Buny™" — Buny

st,n,d

where Zuny’" is the moduli stack of stable vector bundles of rank

st,n,d - ; ;
n and degree d on X and Buny'™” its coarse moduli space, given
again as a scheme via GIT methods. A section of the morphism F

is a vector bundle on X X Bun_s,?"‘d such that the fiber over every

geometric point of Buniﬁ’"’d lies in the isomorphism class of stable
bundles defined by this geometric point. Such a vector bundle is also
called a Poincaré family.

)L)* L« she ﬁml% gL wocwli S’Wl&

In this section we will determine the [-adic cohomology algebra of the

moduli stack f vector bundles of rang n and degree d on a

smooth projectiveirteducible algebraic curve X over the field F,,.
Let us recall the [-adic cohomology algebra of the moduli stack

H (Buny’ Q) = lim H:, (Buny’, Z/IZ) @z, Q..

(e colvmdgﬂ g(f (@D j%—(in\ Aﬁ}:ﬁ&xn V..
L G



@)

Theorem 4.1 (Weil, Deligne). Let X be a smooth projective curve of
genus g over Fy and X = X Xgpec(F,) Spec(IF,) the associated curve

over the algebraic closure F,. Then we have

HY%(X;Q) = Qz :

+(X; Qi) @Qz %

W
H,(X;Q)=0,ifi>3

s N~V
where [X]| is the fundamental class and the «; are eigenclasses under
the action of the geometric Frobenius morphism

F;( : Hyy (X, Q1) — HZ (X, Q)
guen as
Fy(l) =1
Fx(X]) = ¢[X]
Fy(a) = e (i =1,2,...29)

1/2

where \; € Q; is an algebraic integer with |\;| = ¢*/* for any embed-

ding of A\; in C.



0,

The other ingredlent in the determination of the [-adic cohomol-
ogy algebra of L%’unX will be the [-adic cohomology of the clas-
sifying stack #AGL,, of all rank n vector bundles. Let AGL,
PBGL,, XSpecm(Fq) be the associated classifying stack over the

algebraic closure F,. We also have a geometric Frobenius morphism

Fgor, : H3 (#GL,, Q) — H}, (BGL,, Q).
W

S

The l-adic cohomology algebra of G L, and the action of the
Frobenius morphism Fgqyr,, is completely determined by the follow-
ing theorem [Beh93].

Theorem 4.2. There is an isomorphism of graded Q;-algebras

H*m(%Gan Ql) = Ql[cly s Cn]
e TN T T —
and the geometric Frobenius morphism F*@GLH acts as follows

Facr,(ci) =da (i>1).

where the c; are the Chern classes of the universal vector bundle Euniv
of rank n over the classifying stack AGL,,.



O Wb to e ) and B

We will embark now on the determination of the [-adic cohomol-
ogy algebra of the moduli stack %’un}’d. Let £“™" he the univer-
W

sal vector bundle of rank n and degree d over the algebraic stack

X x Buny, . Via representability it gives a morphism of stacks
N N———

w: X x Buny” — BGLy.
MNSINANTI N A A —

The universal vector bundle £“"*" has Chern classes given as
N—— T —

ci(E¥Y) = u*(c;) € H2 (X x Buny”, Q).
e~

Fixing a basis 1 € HY, (X,Q), a; € H},(X,Q) with j =1,...2¢
and [X] € H? (X,Q;) we get the following Kiinneth decomposition
of Chern classes:

29
Ci(guniv) =1® (o Zaj 0% CLZ(-]) -+ [7] ® bi—-l-
7j=1

. ——n.d ; Py —
where the classes ¢; € H% (Buny",Q)), o\ € H2-1(Bun’y",Q,)

sm

and b, € H fﬁ,i“l)(@un X’d, Q) are the so-called Atiyah-Bott classes.

/é Jo- o w’vwolw 9‘ woo{vdéﬁ/tck

Theorem 4.3. Let X be a smooth projective irreducible algebraic
curve of genus g > 2 over the field F, and t@un}’d be the moduli
stack of vector bundles of rank n and degree d on X. There is an
isomorphism of graded Q;-algebras

——n,d
H:m(‘%unX 7(@1) g(@l[cla---acn] ®Ql[blu--->bn—1]
W(l) (29) (ﬁ/w (2)
B NG (@] 7y oo B gn wonsy B 75 » o Bt )

7 n

O wht =gt Cnduaio)d
2 sme
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