
Motivation for the
Introduction of Stacks



Moduli Spaces: Motivation

• What is a moduli problem?

• Philosophically speaking a moduli problem is a classification problem. In geometry or topology, for 
example, we like to classify interesting geometric objects like manifolds, algebraic varieties, vector 
bundles or principal G-bundles up to their intrinsic symmetries, i.e. up to their isomorphisms 
depending on the particular geometric nature of the objects. 

• Just looking at the set of isomorphism classes of the geometric objects we like to classify normally 
does not give much of an insight into the geometry. To solve a moduli problem means to construct a 
certain geometric object, a moduli space, which could be for example a topological space, a 
manifold or an algebraic variety such that its set of points corresponds bijectively to the set of 
isomorphism classes of the geometric objects we like to classify. 

• We could therefore say that a moduli space is a solution space of a given classification problem or 
moduli problem. In constructing such a moduli space we obtain basically a parametrizing space in 
which the geometric objects we like to classify are then parametrized by the coordinates of the 
moduli space.



Moduli Spaces : Motivation

• However:

• Constructing a moduli space as the solution space for a given moduli 
problem is normally not all what we like to ask for.

• We also would like to have a way of understanding how the different 
isomorphism classes of the geometric objects can be constructed 
geometrically in a universal manner.

• So what we really like to construct is a universal geometric object, such 
that all the other geometric objects can be constructed from this universal 
object in a kind of unifying way



Classification of Vectorbundles as an Example

• We like to study the moduli problem of classifying vector bundles of fixed 
rank over an algebraic curve over a field k.

• Let X be a smooth projective algebraic curve of genus g over a field k.

• We define the moduli functor 𝑀𝑋
𝑛 as the contravariant functor from the 

category (Sch/k) of all schemes over k to the category of sets

𝑀𝑋
𝑛: (Sch/k)op → (Sets).



Example: Vectorbundles

• On objects the functor 𝑀𝑋
𝑛 is defined by associating to a scheme U in 

(Sch/k) the set 𝑀𝑋
𝑛(U) of isomorphism classes of families of vector bundles 

of rank n on X parameterized by U, i.e. the set of isomorphism classes of 
vector bundles E of rank n on X × U. 

• On morphisms 𝑀𝑋
𝑛 is defined by associating to a morphism of schemes f : 

U0 → U the map of sets f * : 𝑀𝑋
𝑛 (U) → 𝑀𝑋

𝑛 (U0) induced by pullback of the 
vector bundle E along the morphism idX × f as given by the commutative 

diagram.

•



Example: Vectorbundles

• The moduli problem for classifying vector bundles of rank n and degree d 
on a smooth projective algebraic curve X is now equivalent to the following 
question.

• Is the moduli functor 𝑀𝑋
𝑛 representable? In other words, does there exist a 

scheme Mn in the category (Sch/k) such that for all schemes U in (Sch/k) 
there is a bijective correspondence of sets

• Mn (U) ≌Hom(Sch/k)(U, Mn)? 

• If such a scheme Mn exists, it is also called a fine moduli space



Example: Vectorbundles

• Now let us assume that this functor is representable by a scheme Mn
. We then have

• 𝑀𝑋

𝑛
(U) ≌ Hom(Sch/k)(U, Mn )

• If a fine moduli space Mn exists, we would have in particular a 
bijective correspondence

• 𝑀𝑋
𝑛 (Spec(k)) ≌ Hom(Sch/k)(Spec(k), Mn ) = |Mn|

• But this means that isomorphism classes of vector bundles over X 
are in bijective correspondence with points of the moduli space Mn .



Example: Vectorbundles

• If a fine moduli space Mn exists, we would also have a bijective 
correspondence 

• 𝑀𝑋
𝑛 (Mn) ≌ Hom(Sch/k)(Mn, Mn)

• Now let Euniv be the element of the set 𝑀𝑋
𝑛 (Mn) corresponding to the 

morphism idMn , i.e. Euniv is a vector bundle of rank n over X × Mn.



Example: Vectorbundles

• This vector bundle E univ over X ×Mn is called a universal family of vector
bundles over X, because representability implies that for any vector bundle
E over X ×U there is a unique morphism

f : U → Mn such that E ≌ (idX × f) ∗ (E univ) in the pullback diagram

•



Example: Vectorbundles

• Representability of the moduli functor Mn would therefore solve the moduli 
problem and addresses both desired properties of the solution, namely the 
existence of a geometric object such that its points correspond bijectively
to isomorphism classes of vector bundles on the curve X and the existence 
of a universal family E univ of vector bundles such that any family of vector 
bundles E over X can be constructed up to isomorphism as the pullback of 
the universal family E univ along the classifying morphism



Problems 

It unfortunately turns out that most moduli problems do not admit fine moduli
spaces, i.e their corresponding moduli functors turn out not to be
representable.

This, in particular, also holds for our example at hand, the classification of
vector bundles over smooth curves as we will shortly see.



The Moduli Functor 𝑀𝑋
𝑛 is not representable

• We can argue as follows to show that the moduli functor 𝑀𝑋
𝑛 is not 

representable:

• Let E be a vector bundle on X × U and let pr2 : X × U → U be the 
projection map. In addition, let L be a line bundle on U. 

• Define the induced bundle E 0 := E ⊗ pr∗ 2L.  

• As vector bundles are always locally trivial in the Zariski topology it follows 
that there exists an open covering {Ui}i∈I of the scheme U such that the 
restriction L|Ui of L on Ui is the trivial bundle for all i ∈ I.



The Moduli Functor 𝑀𝑋
𝑛 is not representable

• We will have on X × Ui therefore that E|X×Ui ≌ E 0 |X×Ui . Assume now that the moduli functor
𝑀𝑋
𝑛 is representable , i.e. there exists a scheme Mn such that for all schemes U in the 

category (Sch/k) there is a bijective correspondence of sets 

• 𝑀𝑋
𝑛 (U) ≌ Hom(Sch/k)(U, Mn)

• Then it follows that there exists morphisms of schemes α, α0 : U → Mn corresponding to 
the two vector bundles E and E0 on X × U. But from the remarks above on local triviality of 
vector bundles it follows that the restrictions of α and α0 on Ui must be equal for all i ∈ I,

• i.e. α|Ui = α0 |Ui         

• And from this it would follow immediately that α = α 0 and therefore E≌ E 0 . 

• But in general the two vector bundles E and E 0 are not necessarily globally isomorphic



Alternatives

• There are basically two approaches to circumvent the problem of non-
representability of the moduli functor: 

1. Restrict the class of vector bundles to be classified to eliminate 
automorphisms, i.e. rigidify the moduli problem via restriction of the 
moduli functor to a smaller class of vector bundles and use a weaker 
notion of representability.

2. Record the information about automorphisms by organizing the moduli 
data differently, i.e. enlarge the category of schemes to ensure 
representability of the moduli functor



Towards Stacks

• Let us briefly discuss how this second approach applies to our motiviating
example, the moduli problem of vector bundles of rank n on a smooth 
projective algebraic curve X. 

• How can we record the moduli data differently so that we don’t lose the 
information from the automorphisms? 

• Instead of passing to sets of isomorphism classes of vector bundles we will 
use a categorical approach to record the information coming from the 

automorphisms.



Towards Stacks

• As above let X be a smooth projective algebraic curve of genus g over a 
field k. 

• We define the moduli stack Bunn as the contravariant “functor” from the 
category (Sch/k) of schemes over k to the category of groupoids Grpds

• Bunn : (Sch/k) op → Grpds



Towards Stacks

• On objects Bunn is defined by associating to a scheme U in (Sch/k) the 
category Bunn(U) with objects being vector bundles E of rank n on X ×U 
and morphisms being vector bundle isomorphism, i.e. for every scheme U 
the category Bunn(U) is a groupoid, i.e. a category in which all its 
morphisms are isomorphisms. 

• On morphisms Bunn is defined by associating to a morphism of schemes f : 
U 0 → U a functor f ∗ : Bunn(U) → Bunn(U0 ) induced by pullback of the 
vector bundle E along the morphism idX × f as given by the pullback 
diagram



Towards Stacks

• Because pullbacks are only given up to natural isomorphisms we also 
have for any pair of composable morphisms of schemes U1 → U 0 → U a 
natural isomorphism between the induced pullback functors

• g ∗ ◦ f ∗ ≌ (f ◦ g) ∗

• And these natural isomorphisms will be associative with respect to 
composition.

• Notice: Bunn  is not really a “functor” in the classical categorical sense as it 
preserves composition only up to specified  isomorphisms and Bunn is 
therefore what in general is called a pseudo-functor. 



Towards Stacks

• An important feature of vector bundles is  that they have the special 
property that they can be defined on open coverings and glued together 
when they are isomorphic when restricted to intersections. 

• what we really will get here for Bunn is a pseudo-functor with glueing
properties on the category (Sch/k) once we have specified a topology 
called Grothendieck topology on the category (Sch/k) in order to be able to 
speak of “coverings” and “glueing ”. 

• Such pseudo-functors with glueing properties, like Bunn are called stacks



Summary:Why Stacks

• The moduli problem of classifying vector bundles of rank n over a smooth 
projective algebraic curve X of genus g over the field k has no solution in 
the category (Sch/k), but in stacks.

• This means, Bunn will be representable in stacks

• Another motivation for the introduction of stacks are quotient problems, i.e. 
quotients of schemes by algebraic groups ( alternative to GIT approach)





































 

































































 





















































 






































































